OSense O-Sense
欢迎, 游客
用户名: 密码: 记住我

主题: NMT在水稻研究中的应用成果

NMT在水稻研究中的应用成果 2016-05-26 16:34 #1269

  • 工程师 meng
  • 工程师 meng的头像
  • Offline
New Phytologist:ABA调节植物抵抗水胁迫的新机制(文献编号:C2013-006




在植物适应土壤水胁迫的过程中,维持根的生长非常重要。2013年初,香港中文大学张建华实验室和中国科学院南京土壤研究所施卫明实验室通过非损伤微测技术等多种方法证实了植物为了保持根在中度水分胁迫下的生长,需要生长素激活根尖质子的分泌参与ABA调节抵抗水胁迫的过程。


文中使用水稻和拟南芥为材料,用-0.47 MPa 的PEG进行水胁迫处理后,检测了根尖的ABA积累,生长素运输和质膜H+-ATPase的活性(H+流速或称质子流速),以及初生根的长度和根毛的密度。结果发现中度水胁迫增加了根尖ABA的积累和生长素的运输,ABA参与了根尖生长素运输的调控,生长素激活了质膜H+-ATPase,使更多的质子释放用来适应水胁迫,而根尖的质子分泌对保持和促进初生根的伸长和根毛的发育是必需的过程。


这项研究从ABA调节植物耐水胁迫的作用入手,发现了生长素参与了水胁迫的调节,最终通过促进质子的分泌来维持水胁迫下根的生长。进一步说明激素之间的相互激活对适应环境胁迫具有重要意义。


图注:水稻和拟南芥根部不同位点的H+流速图。正值表示外排,负值为内流。



钾营养[/color](K营养)——Plant Physiology:NMT鉴定OsHAK5在水稻钾营养上的功能
(文献编号:C2014-022


KT/HAK/KUP是植物中最大的K转运家族,但其家族中大多数成员的生理功能并未被深入研究。本研究以这一家族中的OsHAK5为研究对象,检测其在细胞以及组织上的定位,分析其功能。

研究以水稻幼苗作为样品,K饥饿7天后进行相关实验。利用非损伤微测技术(NMT),研究检测了对照组与OsHAK5超表达组、OsHAK5敲除组分别置于0.1 mM、1.0 mM 的K+溶液中检测根部分生区K+流速。结果显示,在0.1 mM K+溶液中,OsHAK5超表达组吸K速率明显高于野生型。当放入1.0 mM K+溶液中,两者吸K速率的差距消失了。而在0.1 mM K+溶液中,OsHAK5敲除组幼苗吸K速率明显降低,其数值只有野生型的20%。将溶液中K+提升至0.1 mM后,两者的吸K速率均大幅上升,而敲除组与野生型的差距从不到野生型的20%缩小到只比野生型小15%。上述结果表明,OsHAK5参与根部K+吸收,特别是在低K条件下。此外实验还检测了根部K吸收率、木质部汁液K浓度及K外运比率,证实了OsHAK5提升水稻根部K+的吸收速率,促进了K+由根部向地上部分的运输。

利用非损伤微测技术进行营养元素的吸收动力学研究,已经成为越来越多植物营养领域研究者的科研选择。这类实验目前已帮助基因功能鉴定、合理施肥等研究取得了诸多具有实际应用价值的成果。[/size]


图注:野生型与突变体水稻在0.1/1.0 mM K+溶液中,K+的吸收速率。正值表示外排,负值表示内流。



New Phytologist:单细胞水平层次研究水稻拒镉机制(文献编号:C2013-019


硅(Si),这一地壳中含量仅次于氧的元素,其对大多数高等植物而言,没有特别重要的意义。但2000年有报道称,Si可以提升植物对生物/非生物胁迫的抗性,其中Si可以抑制重金属镉(Cd)对水稻的毒害尤为引人注目。王荔军课题组通过前期的研究表明,Si可以与水稻细胞的细胞壁结合,形成一种 [Si-wall matrix]Cd的结构,从而抑制水稻细胞对Cd2+的吸收。


本文同样以水稻悬浮细胞作为研究材料,在含有/不含有1 mM硅酸的培养液中培养一段时间后,利用非损伤微测技术(NMT)在不同浓度的Cd2+溶液中检测发现,Si预处理组相较于对照组,Cd2+吸收速率明显降低,这与先前的研究结果一致。研究还观察了Mn2+、Co2+、Cu2+分别存在的条件下,Si预处理组与对照组对Cd2+的吸收情况。结果显示,加入Mn2+、Co2+对Cd2+的流速并无影响,而加入Cu2+后,两组水稻细胞Cd2+的吸收速率均增加数倍。RT-qPCR结果表明,加入Cu2+后,Cd2+转运相关基因Nramp5表达显著上调。


这一研究发现表明,Cd2+的吸收转运会受到其它二价金属离子的影响。其机制可能是Cu2+促使了Nramp5基因的表达,从而导致Cd2+吸收速率增大。此外Cd2+借用Cu2+通道、Cu2+激活Ca2+通道等,均是Cd2+吸收增加的潜在机制。NMT已经成为该课题研究的必要技术。



左图:-/+Si处理时,水稻悬浮细胞Cd2+的流速。黑线,-Si+Cd;红线+Si+Cd。正值表示外排,负值表示内流。;右图:瞬时加入30 μM Cu2+后 ,水稻悬浮细胞Cd2+的流速。



Rice:基因组复制提升水稻抗盐性(文献编号:C2014-029



2014年,水稻研究领域的著名期刊Rice刊登了中科院南京土壤所许卫锋教授与香港中文大学合作的题为《Genome duplication improves rice root resistanceto salt stress》的水稻抗盐研究成果。水稻作为重要的粮食之一,也是盐敏感作物。提升水稻抗盐的内外在机制研究甚多,但基因组重复对水稻耐盐性影响的研究却鲜有报道。本研究观察并揭示了多倍体水稻耐盐性提升的重要机制。

研究采用了同一品种的二倍体及四倍体水稻,分别培养在含有0、150 mM NaCl的1/2 MS培养基中。结果显示,生长在盐环境中的水稻,其长势明显受到影响,但四倍体水稻要明显优于二倍体。利用非损伤微测技术,检测了各组样品根部距离根尖0-5000 μm范围的H+流速。结果显示,距离根尖0-1000 μm范围内,两组样品H+流速没有差异,而且在500-1000 μm之间,H+表现为吸收。从距离根尖1000 μm的位点开始至2000 μm,H+外排趋势逐渐增大并达到稳定值。二倍体与四倍体根尖H+流速对比显示,1000-5000 μm区间内,后者H+外排速率显著高于前者,这也间接反映了四倍体植株的根内pH较二倍体低。

此外,实验实验发现,四倍体水稻植株MDA的含量,脯氨酸积累增多,MDA含量减少。ICP-AES检测根部Na+含量结果显示,四倍体水稻根部Na+含量显著降低。微观结构观察结果可见四倍体水稻的皮层细胞与中柱鞘间出现保护性间隙,这可能是阻挡根部吸收过多Na+的关键因素。研究认为,基因组重复可提升水稻耐盐能力,而这一现象可能与四倍体水稻加强了H+外排至根表面从而减少Na+的进入根部有关。



图注:0、150 mM NaCl处理后,二倍体、四倍体水稻根部距离根尖0-5000 μm范围内的H+流速。正值表示外排,负值表示吸收



其它水稻研究相关参考文献


植物逆境:
(1)Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice.(Journal of Plant PhysiologyC2013-009
(2)Bcl-2 suppresses activation of VPEs by inhibiting cytosolic Ca2+ level with elevated K+ efflux in NaCl-induced PCD in rice.(Plant Physiology and BiochemistryC2014-028
(3)COLD1 Confers Chilling Tolerance in Rice.(CellC2015-005
(4)OsSEC24, a functional SEC24-like protein in rice, improves tolerance to iron deficiency and high pH by enhancing H+ secretion mediated byPM-H+-ATPase.(Plant ScienceC2015-006


植物营养:
(1)Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx.(Plant PhysiologyC2012-021
(2)Nitrogen use efficiency (NUE) in rice links to NH4+ toxicity and futile NH4+ cycling in roots.(Plant and SoilC2013-007
最后修改: 2016-06-02 11:20 由 工程师 meng.
本论坛禁止游客发帖。
管理者: Magee
创建页面时间:0.321秒