氮营养—— Plant, Cell & Environment :缺氮条件下乙烯介导的NRT功能(文献编号:C2013-008)
氮是一个主要的环境因子,调节植物的生长,发育和代谢。硝酸盐(NO3
-)和铵盐(NH4
+)是植物根从土壤吸收氮的主要形式。NO3
- 是许多植物的重要氮源。以前的研究报道了高氮(HN)影响乙烯的生物合成和NRT2.1的表达。然而,在缺氮条件下NRT2.1的转录水平和乙烯信号转导途径之间的相互作用一直不清楚。
2013年,北京林业大学的夏新莉研究组在《Plant Cell and Environment》(2011 IF 5.215)发表了题为“The nitrate transporter NRT2.1 functions in the 1 ethylene response to nitrate deficiency in Arabidopsis”的文章,揭示了缺硝酸盐、乙烯和NRT之间的相互作用和信号途径。研究中使用非损伤微测技术直接测定了拟南芥根部的NO3
-流速,报道了低硝酸盐(LN)处理拟南芥(Col-0)后诱导的快速的乙烯爆发和乙烯信号CTR1,EIN3和EIL1的表达,增强了Col-0以及乙烯突变体ein3-1、ein1-1和ctr1-1的乙烯响应报告基因EBS:GUS的活性。LN处理引起了NRT2.1的上调,增加了高亲和硝酸盐的吸收,NRT2.1的上调表达引起了LN处理下乙烯生物合成和信号转导的正效应。另一方面,乙烯下调了NRT2.1的表达和减少了高亲和硝酸盐的吸收。
这些发现揭开了缺硝酸盐时NRT2.1表达和乙烯生物合成以及信号转导之间的负反馈环路,这可能是由于对植物在适应土壤氮条件时对氮吸收的调节机制。
图注:不同基因型拟南芥根部成熟区的NO3- 流速。正值表示外排,负值表示内流。
氮营养——Plant and Cell Physiology:Ca2+流速指示的微藻氮胁迫信号转导研究(文献编号:C2014-007)
Ca2
+作为植物细胞中最重要的第二信使,参与了植物许多逆境过程的信号转导。在非生物逆境条件下,植物细胞中的Ca2
+在时间、空间及浓度上会出现特异性变化,即诱发产生钙信号。钙信号再通过其下游的钙结合蛋白进行感受和转导,进而在细胞内引发一系列的生物化学反应以适应或抵制各种逆境的胁迫。N限制作为其中一种非生物胁迫被认为是影响植物生长和代谢的重要因素,藻类植物在受到氮素胁迫时会合成一定的淀粉和脂质对胁迫进行响应。作者认为这种适应胁迫的代谢过程与Ca2
+的信号转导过程相关。
本研究中,作者选取绿藻(Chlorella sp. C2)作为实验材料,设置BG11溶液对照组和去除NaNO3的BG11溶液的处理组,利用NMT结合其他技术探讨藻类植物在受到N胁迫时Ca2
+在时间、空间及浓度上的变化及离子所涉及的代谢过程调控。结果表明,绿藻的Ca2
+在对照组中呈外流状态,在受到胁迫的初期阶段(0-2天),N素的缺失显著的降低了Ca2
+的流速,在后半阶段(2-8天),Ca2
+的流速持续降低最终呈内流状态,且处理组和对照组差异显著(如图)。
NMT作为一种非损伤实时测定活体样品的技术,与膜片钳技术和荧光成像技术相比,能解决上述技术无法揭示离子在时间、空间上变化的缺陷。在说明信号转导过程中离子的流速变化的问题上,NMT技术更是一项不可缺少的技术。
图注:左图为样品实时检测图;右图为氮胁迫0-8天时,绿藻Ca2+的流速。正值表示外排,负值表示内流。
氮营养——Journal of Experimental Botany:杨树适应氮受限环境的代谢机制(文献编号:C2013-020)
杨树作为一种木本植物,在造纸业、碳减排、生物燃料等行业具有非常重要的经济价值。目前,大部分杨树品种生长在氮元素受限的生境中,其根部响应低氮环境的机制仍然不清楚。
本文以群众杨和84K杨树根为材料,利用非损伤微测技术(NMT)分别检测了不同氮浓度下两种杨树根部的NH4
+,NO3
-和H
+的流速信息。虽然两种杨树的生长速率不同,但在相同浓度的氮源条件下各离子流速差异不显著,而在不同氮浓度下离子流速差异非常显著(p<0.0001)。结合测定植物根部总N、总C以及涉及氮代谢的功能基因丰度和酶活的测定,最终证实了群众杨和84k杨都是通过降低氮吸收和同化速率来适应氮受限的环境。
文章通过NMT技术检测了两种杨树在氮受限条件下根部离子流速的变化,结合其他方法清楚地揭示了群众杨和84K杨适应氮受限环境的机制,为后续筛选低氮环境下生长的杨树品种提供了非常好的依据。
图注:不同氮浓度下群众杨和84K杨根部NH4+,NO3-和H+流速。正值表示外排,负值表示内流。
氮(N)是蛋白质,核酸,叶绿素的重要成分,也是许多植物的次生代谢产物,在植物生长过程参与着众多的生理环节,因此氮素是植物生长所需的大量主要营养元素。像大部分的木本植物一样,群众杨也是通过添加氮肥来提高它的产量。众所周知,铵盐(NH4
+)和硝酸盐(NO3
-)是植物从土壤中吸收氮营养时的两种形式,同样的群众杨也不例外。但是群众杨在吸收氮营养时,NH4
+,NO3
-的关系以及与伴随在吸收过程中的H+的依存关系,之前的报道没有深入研究过。
在这篇文章中,研究组通过非损伤微测技术(NMT),直接检测了群众杨根的NH4
+,NO3
-和H
+的流速信息。研究了群众杨根吸收氮营养的空间特性,发现根部不同的区域,吸收氮营养的特性不同。其中氨态氮和硝态氮吸收最大的区域分别为距离根尖10mm和15mm处。当环境中两种状态的离子都存在时,根在吸收这两种离子时存在着一定的协同和竞争的关系,而这一过程又受到了质膜ATPase的调控。通过加入质膜ATPase的抑制剂钒酸钠之后发现,促进了H
+的吸收,抑制了群众杨对两种氮源的吸收。
这篇文章通篇仅使用了非损伤微测技术(NMT)一种技术,全面深入的研究了群众杨在吸收营养过程中的NH4
+,NO3
-和H
+的关系,并首次证明了这三者在此过程中存在着协同关系,揭示了群众杨营养吸收的微观机制。
图注:群众杨根部各位点的NH4+流速。正值表示内流。