OSense O-Sense

 

旭月NMT简报---关键词搜索:

第12期--CED-9通过改变跨膜的离子流来提高植物对胁迫的耐受性

抗凋亡基因(CED-9)提高植株对盐胁迫和氧化应激的耐受性

图注:Control(圆形)、PVX-WT(三角形)和PVX/CED-9转基因(方形)烟草植株叶片,在H2O2处理前后,三种叶肉细胞的K+(左)和H+(右)离子流的变化。负值表示离子外流,正值表示离子内流。

凋亡(Apoptosis)是细胞程序性死亡的一种,在调节植物对环境的适应性中起到重要作用。近期有研究表明动物的抗凋亡基因(CED-9)在植物中表达,能够显著提高植物对各种生物和非生物胁迫的耐受性,但隐藏在该现象下的最基本的细胞机制尚未被考察。

烟草(Nicotiana benthamiana)瞬时表达了CED-9凋亡基因后,对盐胁迫及氧化应激时植株的特定离子流“指纹”进行了研究。使用非损伤微测技术(MIFE)对离子流进行检测,可以看到CED-9基因通过改变跨膜K+和H+离子流的模式来提高植株对盐胁迫和氧化应激的耐受性。

本文首次对植物的“离子流指纹”和细胞程序性死亡机制的关系进行研究,发现CED-9基因可以控制叶肉细胞质膜上的两种K+通道:KOR和NSCC,从而阻止NaCl引起的盐胁迫叶片的K+外流;同时,CED-9基因表达能显著降低氧化应激引起的K+外流,维持胞内离子平衡,以减少氧化应激带来的短期和长期损害。

 

关键词:离子流(Ion flux), 膜转运(Membrane transport), 凋亡(Apoptosis), 盐胁迫(Salinity), 氧化应激(Oxidative stress)

参考文献:Sergey Shabala, et al. Planta, 2007, 227:189 -197

 

PDF版及更多参考文献请点击这里

 

第11期--非损伤微测技术用于神经毒性机制的研究

谷氨酸毒性研究:单个神经元O2消耗量、细胞内Ca2+浓度和线粒体膜电位的同时记录

图注:单个神经元细胞在Glu作用下O2消耗量、胞内Ca2+浓度和线粒体膜电位的变化过程。

神经元是可兴奋性细胞,在突触活动及产生动作电位后,神经元要产生大量的ATP驱动离子泵以提高胞内的Na+和Ca2+水平。谷氨酸(Glu)是重要的神经递质,负责快速突触传递及突触传递强度的长期变化,并参与认知和记忆等过程;但如果过度激活谷氨酸受体,谷氨酸会导致离子平衡破坏、细胞死亡等毒性反应。

本文为明确谷氨酸神经毒性的机制,将非损伤微测技术与激光共聚焦技术结合,以大鼠幼崽大脑皮层的神经元为被测样品,用非损伤微测技术(a self-referencing O2 electrode)检测单个神经元O2消耗量(即O2内流),而用激光共聚焦技术检测其胞内Ca2+浓度和线粒体膜电位。

研究发现,在谷氨酸作用下,细胞内Ca2+浓度上升,随后O2消耗量增加,这期间线粒体膜电位也发生相应改变。该结论直接证实了下述谷氨酸毒性机理模型:谷氨酸受体被激活后能引起Ca2+内流,导致细胞内ATP损耗。

将非损伤微测技术与激光共聚焦等技术相结合,检测生物样品内部和外部离子分子或其他信息的变化情况,已经成为揭示生命过程机理机制的重要手段。

 

关键词:非损伤微测技术(a self-referencing O2 electrode), 氧气消耗量(oxygen consumption), 谷氨酸(glutamate);

参考文献:Gleichmann M, et al. J Neurochem, 2009,109: 644-655

 

PDF版及更多参考文献请点击这里

第10期--MAPK通过调节离子流来改变细胞的膨压

MAPK在离子流调节真菌膨压中的作用

 

图注:野生型和os-1突变体真菌菌丝在高渗处理下的H+、K+、Cl-、Ca2+离子流。负值表示离子外流,正值表示离子内流,圆形的是野生型,三角形的是os-1突变体。

真菌在生长过程中通常要维持500kPa的内部膨压,然而,真菌在生长期间不可避免地遭受渗透刺激,生物体通过调节膨压维持一个跨膜的渗透梯度来驱动细胞伸长。丝裂原活化蛋白激酶 (MAPK)是生物体内重要的信号转导系统之一,能够调节细胞的渗透压。

真菌对高渗的应激中电信号发生了快速反应,膨压恢复前(10-60min)出现短暂的去极化(1-2min),紧接着出现持续的超极化(5-10min)。澳大利亚著名微生物学家Lew建立了一种基于非损伤微测技术的研究方法,发现短暂的去极化是由Ca2+内流引起,持续的超极化是由于H+外流引起。渗透突变体os-1的膨压比野生型低,高渗处理后没有持续的超极化,两者的离子流有显著差异,os-1的Cl-吸收增加,K+流几乎不变,H+外流下降。

通过离子流研究,结合分子生物学实验说明MAPK能够调节离子转运,活化H+-ATPase以及调节K+和Cl-的吸收。这项研究为人们认识细胞如何通过蛋白的作用控制离子流,最终调节细胞的膨压来适应环境中的渗透胁迫提供了证据,Ca2+在其中的调控作用将会得到进一步研究。

 

关键词:丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK); 膨压(Turgor); 离子流(Ion flux); 真菌(Fungi)

参考文献:Lew RR, et al. Eukaryotic cell, 2006,5,480-487

PDF版及更多参考文献请点击这里


 

第9期--蓝光诱导的H+和Ca2+流与植物的向光性

蓝光诱导黄化野生型和向光素突变体拟南芥幼苗的H+和Ca2+

图注:蓝光处理后胚轴和子叶的H+、Ca2+流和pH变化(正值为内流)

 

蓝光是控制植物生长和形态发育的重要因子,引起植物子叶扩展,抑制胚轴伸长,这些反应发生的同时或者随后伴随着膜电势和离子转运的变化。非损伤微测技术由于其非损伤性、长时间监测、动态测量和易操作的特点则能非常好地研究离子转运的问题。

使用非损伤微测技术(MIFE)研究了H+和Ca2+离子流动力学和拟南芥蓝光响应的关系:发现蓝光处理的最初10min内诱导了H+和Ca2+转运体活性的显著变化,3-5min时变化达到最大,蓝光立即诱导了野生型和phot2突变体Ca2+内流,而phot1和phot1/phot突变体中Ca2+流保持稳定,说明PHOT1调节Ca2+从质外体吸收进入细胞质;另外,发现光受体调节的H+和Ca2+流存在于切掉胚轴尖端的幼苗,并可能也存在于子叶中,沿着子叶弯勾到胚轴处观察到了Ca2+和H+浓度有波浪形的变化。Ca2+流在蓝光处理下几乎立即就出现,但是H+流滞后了1.5min,而在野生型中H+流变化很小。

在植物的向光反应的信号转导途径过程中,细胞内的[Ca2+]需要维持在一个较高的水平,而PHOT1调节质外体中的Ca2+进入细胞质。这项工作对于认识植物的向光反应的动态过程非常有意义,通过H+和Ca2+的离子动力学有助于揭开植物响应蓝光的机制。

 

关键词:蓝光(blue light,BL);非损伤微测技术(the noninvasive ion-selective microelectrode,MIFE); 向光素(phototropin);H+;Ca2+

 

参考文献:Olga Babourina, et al. PNAS, 2002, 99: 2433-2438

PDF版及更多参考文献请点击这里

 

第8期--K+、Ca2+流与电流的关系(非损伤微电极与膜片钳的结合)

同时测定小麦原生质体的电流与离子流,发现电流与K+密切相关,与Ca2+无关

图注:KORC电流与K+流速密切相关,与Ca2+无关

 

钾是植物生长发育必不可少的元素,离子的流向决定了钾营养循环利用的效率。目前,承担离子转运的许多分子已被分离和鉴定,但运输方向的调控机制目前尚不清楚。

剑桥大学的Matthew Gilliham等研究人员在《The Plant Journal》发表研究论文,应用膜片钳技术获得小麦根原生质体的全细胞外形及电流-电压关系,并通过"非损伤微测技术"检测出质膜K+和Ca2+净离子流速,与通过膜片钳技术测得的电流强度做比较后发现,K+流速/强度的比值变化反映了质膜上KORC通道的不同分布,而且Ca2+流速与K+通道的激活并没有相关性。

研究表明当检测到较强的Ca2+流时并未产生电流,也就是使用膜片钳技术研究Ca2+通道时,即使没有检测到电流,但很可能存在Ca2+流。所以,同时检测跨膜的离子流和电流才能准确地确定离子载体和离子通道的数量和类别。

关键词:微电极离子流测定( Microelectrode Ion-Flux Estimation); 膜片钳(Patch clamp)

参考文献:Matthew G. et al. The Plant Journal. 2006, 46:134-144

 

PDF版及更多参考文献请点击这里