OSense O-Sense

 

旭月NMT简报---关键词搜索:

第214期-EEB:西北农林马锋旺|干旱胁迫促进海棠铵吸收

       研究使用设备

图注:活体生理检测仪Physiolyzer®

NISC文献编号:C2018-005

       目前,植物如何优化它们对于不同形态无机氮的偏好性,从而提高其在逆境中的生存适应性,这一机制还不是很清楚。

       2018年4月,西北农林科技大学马锋旺教授课题组在Environmental and Experimental Botany上发表了一篇题为“Ammonium uptake increases in response to PEG-induced drought stress inMalus hupehensisRehd”的成果,主要研究干旱胁迫对海棠幼苗根系铵吸收的影响机制。

海棠幼苗根尖NH4+流检测图

       实验采用水培系统,监测海棠幼苗在干旱条件(5%PEG)下供应低氮与正常氮(0.05 mM和1.0 mM NH4NO3)时,其形态、生理和分子变化。研究中利用基于非损伤微测技术(Non-invasive Micro-test Technology, NMT)的NMT活体生理检测仪Physiolyzer®,检测了干旱胁迫时,不同氮供应条件下海棠幼苗根尖的NH4+与NO3-流速。

不同条件下,海棠幼苗根尖NH4+、NO3-流速检测。正值表示吸收

       同时,还将谙硝流速数据与同位素质谱的结果相结合,发现:干旱条件下,稳态15NH4+的吸收速率高于15NO3-。转录组数据表明:干旱条件下,与铵吸收相关的转运基因(AMT4;2和AMT4;3)明显上调,而硝相关基因表达水平下调。最终得到结论:与NO3-相比,NH4+对于干旱胁迫更加敏感,具体表现是吸收率更大,并且根部的吸收区域增大。

如何设计非损伤NO3-/K+吸收实验

 

非损伤微测技术国际交流

       受“中关村旭月非损伤微测技术产业联盟”(简称“中关村NMT联盟”)委派,联盟理事单位——旭月公司前往美国,进行项目合作、学术技术交流。

  • 科研院校项目合作洽谈

       目前已经走访了麻省大学阿默斯特分校,后续将继续走访哈佛大学、麻省理工学院、塔夫茨大学等院校。受联盟会员单位中的科研院校之托,此次走访的首要任务,是在生命科学领域,为会员单位的人才引进计划,物色潜在人选。

       如果您的单位对国际人才,尤其是华人人才引进,以及国际科研合作感兴趣,欢迎联系我们。

麻省大学阿默斯特分校Morrill Science Center

麻省大学阿默斯特分校

  • 技术交流

       此行,旭月将最新研发的Cu2+、Pb2+流速传感器带到美国,并与美国扬格公司,进行了深入地技术交流,学习了美国扬格公司最新的自动化非损伤技术以及相关理念。

美国扬格公司

非损伤微测技术交流

交流讨论

    

注:SIET、MIFE、SVET、SPET等技术名称,已经统一为Non-invasive Micro-test Technology,中文名“非损伤微测技术”,简称NMT。

第213期-Sci Rep:林科院亚林所卓仁英| Nramp金属转运体促植物Cd积累

       研究使用设备

图注:活体生理检测仪Physiolyzer®

NISC文献编号:C2017-029

       植物天然抗性巨噬细胞蛋白(Nramp)家族在重金属胁迫中起着重要的作用。然而,现有研究几乎没有发现Nramps在重金属富集植物 东南景天中的功能特征。

       2017年,中国林科院亚热带林业研究所卓仁英研究员课题组在Scientific Reports上发表了题目为“Sedum alfredii SaNramp6 Metal Transporter Contributes to Cadmium Accumulation in Transgenic Arabidopsis thaliana”(Sci Rep, 2017, 7(1):13318.)的文章,探究东南景天Nramp在重金属胁迫时的作用。

       实验以东南景天为材料,克隆并鉴定了Nramp6基因,分析其在转基因拟南芥中的功能。SaNramp6 cDNA包含一个1638bp的ORF,编码545个氨基酸。镉(Cd)胁迫可诱导SaNramp6的表达,根和叶片分别处理一周和12h后达到峰值。

       SaNramp6定位于拟南芥、红花烟草下表皮、洋葱表皮细胞的原生质体质膜上。在酵母突变体的异源表达实验显示,SaNramp6增加了酵母细胞中的Cd含量。此外,在Cd胁迫下,Cd浓度、易位因子、Cd2+流速的数据结果显示,SaNramp6过表达拟南芥表现出很高的Cd积累水平。

拟南芥根部Cd2+流检测图

       其中,利用基于非损伤微测技术(Non-invasive Micro-test Technology, NMT)的NMT活体生理检测仪NMT Physiolyzer®检测Cd2+流速,结果显示,相比于野生型拟南芥,过表达组中Cd2+吸收速率明显提高,而突变组明显下降。

各组拟南芥的Cd2+流速结果。负值表示吸收

       卓仁英研究员主要专注于林木耐盐、重金属cd抗性的育种研究。自2017年开始,已经利用非损伤微测技术,在Front Plant Sci、Environ Exp Bot等期刊,发表SCI文章4篇,累计影响因子16.789。

重大科研先机:铜、铅流速传感器上市!

       2018年8月底,旭月公司最新研发的铜(Cu2+)、铅(Pb2+)流速传感器正式对外提供销售、检测服务。

       作为这一研究方向的学者,如果你多犹豫1秒,我将以重金属镉(Cd2+)流速传感器的案例告诉你,你将会失去多么大的科研先机!

       自旭月Cd2+流速传感器商业化后,目前已发表38篇SCI文章,累积影响因子150.4。对于已经在植物领域五大学术期刊(PP、PJ、PC、MP、NP)发文数量,占据2个第一3个第二(2017年中国植物科学若干领域重要研究进展,植物学报.)的中国植物科研界来说,这当然不算什么。

       但是,当我们挑出这38篇中最先发表的10篇SCI文章,统计引用次数时,结果惊呆了。它们的平均引用次数达到了47.6次,平均发表年限为5年,换算为“影响因子”,接近于10!相比于这10篇文章真实的平均影响因子4.0175,足以看出当年占得Cd2+流速传感器先机的研究者们,获得了多么大的科研回报!

利用旭月Cd2+传感器最先发表的10篇SCI文章

      还在等什么呢!?第一篇Cu2+、Pb2+流速文章都已经发表了!联系我们,抓住科研先机。

     

注:SIET、MIFE、SVET、SPET等技术名称,已经统一为Non-invasive Micro-test Technology,中文名“非损伤微测技术”,简称NMT。

 

第212期-Environ Exp Bot:林科院亚林所卓仁英|沙柳致病蛋白抑制植物耐盐能力

       研究使用设备

图注:活体生理检测仪Physiolyzer®

       致病相关(PR)蛋白参与植物防御,其具有多种功能适应性,有助于抵抗各种病原体、提高环境胁迫耐受性。沙柳是一种生长迅速的柳树品种,可以耐受许多不利环境。

       中国林科院亚热带林业研究所卓仁英教授课题组在Environmental and Experimental Botany上发表了一篇文章,题目为“Pathogenesis-related protein PR10 from Salix matsudana Koidz exhibits resistance to salt stress in transgenic Arabidopsis thaliana”,主要探究PR蛋白在植物耐盐机制中起到的作用。

       前期的比较蛋白质组学分析表明:沙柳PR蛋白(SmPR10)较为丰富,经过100 mM NaCl处理后表达上调。本实验以沙柳为材料,克隆并鉴定了SmPR10基因,以验证其在耐盐性中的作用。SmPR10的氨基酸序列与紫苏柳和毛白杨的PR蛋白的序列同源性分别为98%和93%。SmPR10定位在拟南芥原生质体的胞质中,根的转录及蛋白水平较高,且100mM NaCl处理后表达上调。免疫定位分析发现,韧皮部纤维细胞和根木质部中特异性的检测到SmPR10。而且,SmPR10的异质过表达提高了转基因拟南芥的耐盐性,具体表现在根长度、根数量、Na+流速、以及叶绿素含量、MDA含量、电导率等生理参数及SOD和POD酶活性水平。

拟南芥根部Na+流检测图

对照组、盐胁迫组拟南芥根部Na+流结果。正值表示外排

       其中,Na+流速利用基于非损伤微测技术(Non-invasive Micro-test Technology, NMT)的NMT活体生理检测仪 Physiolyzer®进行检测,发现正常条件下,转基因组与野生对照组的Na+外排相似。但是,100mM NaCl处理后,转基因组的Na+外排明显增加。这说明:相比于野生型,SmPR10过表达幼苗根部的Na+外排能力更高,从而更加耐盐。

       目前,林科院、北京林大、南京林大、东北林大、福建农林等国内主要的林木研究单位,均已采购美国扬格/旭月北京非损伤设备。近期,林业领域大家庭中又新添一份子——中国林业科学院资源昆虫研究所。

       7月26日,美国扬格/旭月北京非损伤微测系统,顺利中标中国林业科学院资源昆虫研究所。资源昆虫所下设工业原料昆虫、食药用昆虫、环境昆虫、森林病虫害、恢复生态、森林培育、分子生物学与生物化学、林产化工、国际真菌研究中心等多个研究室,NMT作为通过检测离子、分子检测,揭示活体生物与外界环境进行信息交换的工具,它到底能为资源昆虫所带来哪些新的科研机遇与成果呢?

1、工业原料昆虫相关产品生产的基础研究

       紫胶、白蜡、五倍子研究是资源昆虫所的优势。在提升五倍子质量、产量研究过程中,五倍子同母体间营养物质、信号的交换运输,可以通过非损伤对母体-虫瘿连接部进行检测。类似的研究,在愈伤组织上已经开展。

       此外,蚕丝形成的主要器官丝腺,也有研究者已经利用非损伤开展离子转运相关研究。

2、森林病虫害研究

1)虫害

       “离子流信号是植物感受外界刺激的原初信号”。北京林业大学沈应柏教授在接受中关村非损伤微测技术产业联盟(简称“NMT联盟”)采访时表示,在植物抗虫防御研究中,植物为什么能够识别出昆虫取食?这与离子流信号的传递密切相关。

离子流是植物感知外界刺激的原初信号

      在应对外界刺激时,植物也会做出多种调整,其中很重要的一点就是调节气孔的开闭。沈应柏教授利用非损伤,对气孔调节机制进行了深入研究,并在Plant Journal(2015, 83(4): 638-649.)上发表了研究成果。

非损伤观测离子流调控气孔开闭的过程

      在应对外界刺激时,植物也会做出多种调整,其中很重要的一点就是调节气孔的开闭。沈应柏教授利用非损伤,对气孔调节机制进行了深入研究,并在Plant Journal(2015, 83(4): 638-649.)上发表了研究成果。

2)病害

       Ca2+振荡是病原菌与植物形成稳定互作的标志。

病原菌侵染后叶肉组织的Ca2+流振荡现象

J Membrane Biol, 1998, 161(1): 45-54.

90年代末,研究者们就开始利用NMT研究植物病原体侵染过程的微观信号传递。目前的研究成果显示,病原体侵染植物的过程,与Ca2+、K+、Cl-等诸多离子流信号相关。

 

3、森林培育之良种生产

耐盐碱、耐瘠薄、生长周期短、产量高。非损伤在林木育种领域的应用,相比于其它领域尤为突出。北京林业大学陈少良教授是国内最先应用NMT进行林木抗逆研究的研究者,其2009年发表的通篇使用NMT离子流数据的文章(Plant Physiol, 2009, 149: 1141-1153.),引用次数已达177次。目前,Na+、K+、H+流,已成为陈少良教授实验室研究的基石。

其后,来自林科院苏晓华研究员、西北农林科技大学(现中国林科院)的罗志斌教授、东北林业大学(现浙江农林大学)柳参奎教授、林科院亚林所卓仁英研究院,在林木盐碱胁迫、氮营养、重金属胁迫等领域,发表了诸多研究成果。

为什么会被非损伤所吸引用于林木重金属研究?

 

NMT技术答疑

我测到的IAA流速结果同国外文献相比,同样的根部区域,IAA流动方向是相反,且数量级上有较大差异,为什么?

旭月答复

1、旭月IAA传感器灵敏度更高

旭月的IAA传感器,是商业化的IAA传感器,是经过严格的研发过程才最终面世的。比国外实验室里用的IAA传感器,灵敏度高1-2个数量级。

2、实验体系的不同可能引起差异

1)国外文献中的IAA传感器,必须在测试液中加入IAA,才能测到信号。旭月经商业化研发的IAA传感器,可检测内源IAA,无需在测试液中加入IAA,这种体系更接近于样品的真实生长环境。如果想要进一步同文献中的实验进行对比,可以来旭月尝试测试液中加IAA的实验;

2)不同的样品、不同的培养方式等等,也可能会引起上述差异。

3、IAA流速背后是巨大的科研机会

目前,IAA流速在国际范围内,也都是比较新颖的数据结果,这方面研究依然处于探索阶段,科研机会巨大。

经过艰苦的研发,旭月在技术上已经来到世界前沿,但国内运用NMT进行IAA研究的学者们,也必须在学术层面跟上领先者的步伐,同时要有信心迎接面临的挑战,才有可能抓住这个机遇。

4、旭月公司可提供专业化的协助

旭月拥有世界先进的IAA流速传感器技术,可提供极具说服力的IAA信号源/样品信号对比实验服务。我们非常愿意以商业合作的模式,帮助研究者在IAA研究上需求突破。同样,合作的前提是您必须对旭月、对国人的技术有信心。

     

注:SIET、MIFE、SVET、SPET等技术名称,已经统一为Non-invasive Micro-test Technology,中文名“非损伤微测技术”,简称NMT。

 

第211期-Science:谷氨酸受体样通道的胞内运输对花粉管钙流的影响

       研究使用设备

图注:活体生理检测仪Physiolyzer®

       植物虽然缺少很多在哺乳动物中调节细胞内钙离子浓度的机制,但是它们仍然利用钙离子信号来帮助完成多种生理功能,这其中仍有许多Ca2+调控机制还无法准确解释清楚。

       2018年5月4日,马里兰大学学者在Science上发表了一篇文章,题目为“CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis”,主要研究花粉管Ca2+稳态的调控机制。

       研究中利用非损伤微测技术(Non-invasive Micro-test Technology, NMT),检测了野生型(Col-0)和不同种类突变体的拟南芥花粉管尖端Ca2+吸收速率。

图注:花粉管尖Ca2+流检测图

花粉管Ca2+检测视频

       结果显示,谷氨酸类受体通道(GLRs)的排布与激活与CNIH蛋白相关。花粉管表达单突变体拟南芥GLRs(AtGLRs)表现出生长、花粉管质膜Ca2+通道显示的Ca2+流速;但是,高阶突变体AtGLR3.3表现出与假设相反的现象:这些差异可以通过亚细胞AtGLR定位来解释,研究人员同样探讨了这样的排序中AtCNIHs的意义。他们发现AtGLRs与AtCNIH对的互作产生了特定的胞内定位点。在不含配体的哺乳动物细胞中,AtCNIHs进一步触发了AtGLR活性。这些数据结果共同揭示了一种机制,即AtCNIHs引发AtGLRs的排布和活性变化,从而调控Ca2+稳态。

图注:野生型及不同类型突变体拟南花粉管Ca2+流速检测。正值表示吸收

       本研究着重探讨了硅结合细胞壁后,对于提升单个水稻悬浮细胞氮吸收的作用,验证了不通过提升细胞膜铵转运体的方式,提升水稻氮营养吸收的新手段。

 

NMT花粉管研究案例

       大到植物组织,小到单细胞,非损伤凭借其可测样品尺寸广的特点,其可应用领域覆盖医学生理学、植物科学、动物科学、微生物学、环境科学等。

 

注:SIET、MIFE、SVET、SPET等技术名称,已经统一为Non-invasive Micro-test Technology,中文名“非损伤微测技术”,简称NMT。

        下载全文

第210期-Ann Bot:华中农大王荔军|硅提升水稻铵吸收

       研究使用设备

图注:活体生理检测仪Physiolyzer®

       2018年,华中农业大学资源与环境学院王荔军教授课题组,在Annals of Botany上发表了题为“Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells”的研究成果。

       硅是水稻的有益营养物,水稻悬浮细胞中的细胞壁含有结合形式的硅,硅可与细胞壁结合进而提高水稻的养分吸收以及优化生长代谢,但此种作用的结构基础和生理机制在之前的研究中没有得到很好的解释。

       硅可通过提高氮利用效率增加水稻产量,并且通过刺激氨基酸再活化来改变初级代谢,还可影响与氨基酸合成和碳代谢有关的酶。

       本研究通过单细胞水平下的生物物理测量,利用基于非损伤微测技术(Non-invasive Micro-test Technology, NMT)的NMT Physiolyzer®(NMT活体生理检测仪),测定了水稻悬浮细胞NH4+、NO3- 、K+的流速。同时,利用原子力显微镜观察了细胞壁,检测了电解质渗漏和膜电位。最后,采用同位素标记相对和绝对定量技术(iTRAQ)分析了全细胞蛋白质组学。研究发现,细胞壁结合硅增强了细胞壁的刚性,从而增强了细胞膜的稳定性,优化了相同生长阶段中细胞对NH4+的营养摄取。

       本研究着重探讨了硅结合细胞壁后,对于提升单个水稻悬浮细胞氮吸收的作用,验证了不通过提升细胞膜铵转运体的方式,提升水稻氮营养吸收的新手段。

图注:水稻悬浮细胞在不同尺寸Si纳米颗粒处理后的吸Cd2+速率。负值表示吸收

       利用NMT检测了在对照(-Si)和1.0 mM 硅酸处理(+ Si)的情况下,培养3个月的水稻悬浮细胞对NH4+、NO3-、K+的吸收速率。结果显示,Si处理后,明显提升了水稻悬浮细胞对NH4+的吸收速率。

    NMT在植物营养领域的应用成果

       截至2018年6月,国内学者利用美国扬格(旭月北京)非损伤微测系统,在植物营养领域已发表SCI文章55篇,总影响因子为215.7。国内从事营养研究领域

 

注:SIET、MIFE、SVET、SPET等技术名称,已经统一为Non-invasive Micro-test Technology,中文名“非损伤微测技术”,简称NMT。

        下载全文:C2018-007